

Variability of the Red River plume in the Gulf of Tonkin from a numerical approach

A part of PhD thesis, by Duy Tung Nguyen Supervisors: Pierre De Mey-Frémaux, Thanh Ngo-Duc, Nadia Ayoub

Nguyen-Duy T, Ayoub NK, Marsaleix P, Toublanc F, De Mey-Frémaux P, Piton V, Herrmann M, Duhaut T, Tran MC and Ngo-Duc T (2021) Variability of the Red River Plume in the Gulf of Tonkin as Revealed by Numerical Modeling and Clustering Analysis. *Front. Mar. Sci.* 8:772139. doi: 10.3389/fmars.2021.772139

April 2022

1. Introduction

Gulf of Tonkin:

• A shallow, semi-enclosed basin, west of South China Sea

22°N

18°N

14°N

10°N

- Effect of monsoon:
 - Summer: southwesterly wind
 - Winter: northeasterly wind

Red River

- Second largest river in Vietnam (~ 3000m³/s)
- Mean sediment load: > 10Mt/year

Red River delta

- Formed from 11 provinces, 22.5 millions people
- Population density: 1060 inhabitants/km², 4 times higher than the national average
- High population density exerts a strong pressure on the rivers and their environment
- => it is important to be able to identify and understand the variability of the river plume in the Gulf of Tonkin

1. Introduction

Objectives

Using numerical method to:

- Describe the development of the river plume in the Gulf of Tonkin
- characterize its variability at different scales over the period 2011-2016
- describe the physical processes underneath the plume variations

Approaches

- The river plume is identified using passive tracer
- The plume regimes are classified with the help of K-means clustering analysis

2. Methods and tools

SYMPHONIE coastal model (Marsaleix et al., 2008)

- Configuration adapted from Piton et al., 2020
 - Variable mesh: 300m at coast, 5km near the open boundary
 - **20** vertical sigma levels
 - Boundary condition: global Copernicus simulation (Mercator reanalysis 1/12 degree)
 - Atmospheric conditions: **ECMWF analysis** (3 hours)
 - Tidal forcing: FES2014 (Lyard et al., 2021)
 - Run from **2010 2016**, 1 year spin-up

Fig: model grid with bathymetry (ratio: 1/50)

2. Methods and tools

River's settings:

Red Rivers

- Daily discharge data from hydrological stations
- Each river connects to a channel to better simulate the effect of tides on the estuarine waters

Other Rivers

• Monthly mean climatological runoff

Passive tracers

- Injected continuously at the river input point, with concentration = 100 unit/m³
 - 1 for Red River
 - 1 for southern rivers
 - 1 for northern rivers

Fig: Locations of the rivers in the gulf

3. Variability of the river plume

3.1. Identify river plume and its surface variability

Using tracer

- Can distinguish the river runoff from different rivers and avoid the dilution impact of precipitation
- The plume is defined as the area where the tracer concentration >=7 unit/m³

The plume has strong variability, both in space and time (not shown)

 \Rightarrow Need a method to simplify the analysis

South of 20N, the Red River plume is quickly joined by southern rivers plume along Vietnamese coast

 \Rightarrow in the following analyses, we will analyze the plume created by the all the Red rivers and other VN rivers.

3. Variability of the river plume

3.2. Identify the general pattern of plume surface area using K-means clustering analysis

- In this study, the surface plume area is classified into 4 general regimes.
- Library: scikit-learn

Cluster "1" Cluster "2" ... Cluster "n" groups of plume that have similar shape

Fig: River plume clustering process

4. Conclusions and perspectives

4.1. Conclusions

- **Passive tracer** is useful to identify the river plume, especially in the basin with several river sources
- We explored the application of **K-means clustering analysis** to detect the main regimes of the river plume.
- The processes and forcings (wind, current, runoff) linked with these regimes are analysed.
- We also examine the **impact of tides** on the plume regimes and plume thickness

These results have been published in an article:

Nguyen-Duy T, Ayoub NK, Marsaleix P, Toublanc F, De Mey-Frémaux P, Piton V, Herrmann M, Duhaut T, Tran MC and Ngo-Duc T (2021) Variability of the Red River Plume in the Gulf of Tonkin as Revealed by Numerical Modeling and Clustering Analysis. *Front. Mar. Sci.* 8:772139. doi: 10.3389/fmars.2021.772139

4. Conclusions and perspectives

4.1. Perspectives

- In each cluster, the plume is strongly affected by the wind.
- \Rightarrow What is the robustness of these results due to wind uncertainty?
- \Rightarrow We are working on the ensemble simulations with perturbed wind forcing

